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Abstract

Recognizing fine-grained sub-categories such as birds

and dogs is extremely challenging due to the highly local-

ized and subtle differences in some specific parts. Most pre-

vious works rely on object / part level annotations to build

part-based representation, which is demanding in practi-

cal applications. This paper proposes an automatic fine-

grained recognition approach which is free of any objec-

t / part annotation at both training and testing stages. Our

method explores a unified framework based on two steps of

deep filter response picking. The first picking step is to find

distinctive filters which respond to specific patterns signifi-

cantly and consistently, and learn a set of part detectors via

iteratively alternating between new positive sample mining

and part model retraining. The second picking step is to

pool deep filter responses via spatially weighted combina-

tion of Fisher Vectors. We conditionally pick deep filter re-

sponses to encode them into the final representation, which

considers the importance of filter responses themselves. In-

tegrating all these techniques produces a much more pow-

erful framework, and experiments conducted on CUB-200-

2011 and Stanford Dogs demonstrate the superiority of our

proposed algorithm over the existing methods.

1. Introduction

As an emerging research topic, fine-grained recognition

aims at discriminating usually hundreds of sub-categories

belonging to the same basic-level category. It lies between

the basic-level category classification (e.g. categorizing

bikes, boats, cars, and so on in Pascal VOC [8]) and the i-

dentification of individual instances (e.g. face recognition).

An inexperienced person can easily recognize basic-level

categories like bikes or horses immediately since they are

visually very dissimilar, while it is difficult for him / her to

tell a black bird from a crow without specific expert guid-

ance. As a matter of fact, fine-grained sub-categories of-

ten share the same parts (e.g., all birds should have wings,

legs, etc.), and are often discriminated by the subtle differ-
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Figure 1. Illustration of filter selectivity for a typical network

VGG-M [4] on CUB-200-2011. We generate candidate patches

with selective search [25] and compute response of each patch at

conv4 layer. We show several top responding patches of some

channels and observe that there exist some filters which respond

to specific patterns (e.g., the head or leg of bird), while most of

them respond chaotically. This paper proposes to pick deep fil-

ters with significant and consistent responses, and learn a set of

discriminative detectors for recognition.

ences in texture and color properties of these parts (e.g. only

the breast color counts when discriminating similar birds).

Hence localizing and describing object and the correspond-

ing parts become crucial for fine-grained recognition.

In order to achieve accurate object and part locations,

most existing works explicitly require object level or even

part level annotations at both training and testing stages [3],

[28], [33]. However, such a requirement is demanding in

practical applications. Some works consider a more rea-

sonable setting, i.e. object / part level annotations at only

training stage but not at testing time [15], [32]. However,

even with such a setup, it still requires expensive annota-

tions at training stage, and is especially hard for large scale

recognition problems. Hence, one promising research di-

rection is to free us from the tedious and subjective man-

ual annotations for fine-grained recognition, which we re-

fer to automatic part discovery. However, discovering parts

automatically is a classical chicken-and-egg problem, i.e.

without an accurate appearance model, examples of a part

cannot be discovered, and an accurate appearance model

cannot be learned without having part examples. Some pio-

neering works begin to consider this issue [21], [27]. How-
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Figure 2. An overview of our proposed framework. Our approach consists of two picking steps. The first step aims at picking deep filters

which respond to specific patterns significantly and consistently. Based on these picked filters, we choose positive samples and train a set

of discriminative detectors iteratively. The second step is to pick filter responses via Spatially Weighted Fisher Vector (SWFV) encoding.

We assign each Fisher Vector a weight and pool it into final image representation, which considers the importance of Fisher Vector itself.

ever, these methods either needs a network trained from

scratch [27], or suffers complex optimization [21], and the

performance is limited.

As our first contribution, we propose an automatic part

detection strategy for fine-grained recognition (Sec. 3),

which is free of any object / part level annotation at both

training and testing stages. Our detection method consists

of two main contributions. First, we propose a novel ini-

tialization method for detector learning, which is based on

the selectivity of deep filters. As illustrated in Fig. 1, which

shows some top responding patches of some filters on CUB-

200-2011. It can be found that some filters work as part de-

tectors and respond to specific parts (i.e., the head of bird).

However, these detectors are weak and most of them are

not relevant to our task. The key insight of our initialization

approach is to elaborately pick deep filters with significan-

t and consistent responses. Second, we propose to learn

a set of detectors via iteratively per-category positive sam-

ple mining and regularized part model retraining. We mine

new positive samples by category and introduce a regular-

ized term for each positive sample, which considers both the

diversity and reliability of positive samples. The learned de-

tectors tend to discover discriminative and consistent patch-

es which are helpful for part-based recognition.

Feature representation is another key issue for fine-

grained recognition. Recently, Convolutional Neural Net-

work (CNN) has been widely used for feature extraction.

However, there exist two challenges for fine-grained repre-

sentation. The first is that traditional CNN representation

requires fixed size rectangle as input, which inevitably in-

cludes background information. However, background is

unlikely to play any major role for fine-grained recognition

since all sub-categories share similar background (e.g. all

birds usually inhabit on the tree or fly in the sky). The sec-

ond is the gap between detection and classification. Due to

large pose variation and partial occlusion, detection may be

unreliable and lose crucial details for recognition.

To address the above challenges, as our second contri-

bution, we propose a new kind of feature which is suitable

for fine-grained representation (Sec. 4). We regard deep fil-

ter responses of a CNN as localized descriptors, and encode

them via Spatially Weighted Fisher Vector (SWFV-CNN).

The key insight is that not all filter responses are equally

important for recognition. Our goal is to highlight the re-

sponses which are crucial for recognition and discount those

which are less helpful. To this end, we propose a picking s-

trategy which conditionally selects descriptors based on part

saliency map, which indicates how likely a pixel belongs to

a foreground part. Experimental results demonstrate that

SWFV-CNN performs consistently better than traditional

CNN, and is complementary with traditional CNN to fur-

ther boost the performance.

• Framework overview. An overview of our proposed

framework is shown in Fig. 2. Our approach consists of

two picking steps. The first step aims at picking deep filters

which respond to specific patterns significantly and consis-

tently. Based on these filters, we elaborately select posi-

tive samples which are semantically similar and train a set

of discriminative detectors. We use an iterative procedure

which alternates between selecting positive samples and

training classifier, while applying cross-validation at each

step to prevent classifier from overfitting the initial positive

samples. The trained detectors are used to discover parts

for recognition. The second step is to pick CNN filters via

Spatially Weighted combination of Fisher Vector, which we

refer to SWFV-CNN. We compute spatial weights with part

saliency map, which indicates how likely a pixel belongs to

a foreground part. The part saliency map is used to weight
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each Fisher Vector and pool it into final image representa-

tion, which considers the importance of Fisher Vector itself.

The rest of this paper is organized as follows. Sec. 2

describes related work on fine-grained categorization. The

details of our proposed part discovery strategy is elaborat-

ed in Sec. 3. In Sec. 4, we describe our proposed Spatial-

ly Weighted FV-CNN. Experimental results and discussions

are given in Sec. 5. Sec. 6 concludes the paper.

2. Related Works

Fine-grained recognition is a challenging problem and

has recently emerged as a hot topic. In the following, we

organize our discussion related to fine-grained recognition

with two tasks: part localization and feature representation.

2.1. Part Localization

As fine-grained datasets are often provided with extra an-

notations of bounding box and part landmarks [18], [19],

[26], most works rely on these annotations more or less.

Early works assume that annotations are available at both

training and testing time. Among them the strongest su-

pervised setting is to use both object and part level annota-

tions [1], [17], [28]. Obviously, this kind of setting is de-

manding and a more reasonable setting only assumes the

availability of object bounding box. Chai et al. [3] intro-

duce techniques that improve both segmentation and part

localization accuracy by simultaneous segmentation and de-

tection. Gavves et al. [10] propose a supervised alignment

method which retrieves nearest neighbor training images for

a test image, and regresses part locations from these neigh-

boring training images to the test image.

Later works require annotations only during training,

and no knowledge of annotations at testing time. These

methods are supervised at the level of object and parts dur-

ing training. Zhang et al. [32] generalize the R-CNN [11]

framework to detect parts as well as the whole object. Bran-

son et al. [2] train a strongly supervised model in a pose

normalized space. Further on, Krause et al. [15] propose a

method which only need object level annotations at training

time, and is completely unsupervised at the level of parts.

Recently, there have been some emerging works which

aim at a more general condition, e.g. without expecting any

information about the location of fine-grained objects, nei-

ther during training nor testing time. This level of unsuper-

vision is a big step towards making fine-grained recogni-

tion suitable for wide deployment. Xiao et al. [27] propose

to use two attention models with deep convolutional net-

works, one to select relevant patches to a certain object, and

the other to localize discriminative parts. Simon et.al. [21]

propose to localize parts with constellation model, which

incorporates CNN into deformable part model [9].

Our approach belongs to the last setting, which is free of

any object / part level annotation at both training and testing

stages. Different from previous works [21], [27], we learn a

set of discriminative detectors via elaborately selecting pos-

itive samples and iteratively updating part models.

2.2. Feature Representation

For the description of image, CNN features have

achieved breakthrough on a large number of benchmark-

s [11], [20], [31], etc. Different from traditional descrip-

tors which explicitly encode local information and aggre-

gate them for global representation, CNN features represent

global information directly, and can alleviate the require-

ment of manually designing a feature extractor. Though

not specifically designed to model sub-category level dif-

ferences, CNN features capture such information well [7].

Most works choose the output of a CNN as feature repre-

sentation directly [2], [15], [27], [32]. However, CNN fea-

tures still preserve a great deal of global spatial information.

As demonstrated in [31], the activations from the fifth max-

pooling layer can be reconstructed to form an image which

looks very similar to the original one. The requirements of

invariance to translation and rotation are weakly ensured by

max-pooling. Though max-pooling helps improve invari-

ance to small-scale deformations, invariance to larger-scale

deformations might be undermined by the preserved glob-

al spatial information. To solve this issue, Gong et al. [12]

propose to aggregate features of the fully connected layer-

s via orderless VLAD pooling. Considering deeper layers

are more domain specific and potentially less transferable

than shallower layers, Cimpoi et al. [6] pool features from

the convolutional layers, and achieve considerable improve-

ments for texture recognition.

Our approach regards responses from deep CNN filter-

s as localized descriptors (similar with SIFT), and encodes

these responses via Fisher Vector. Different from previous

works which encode CNN descriptors globally [6], [12], we

project each response back to the original image and encode

each part separately. Most importantly, we propose a pick-

ing strategy which conditionally selects responses based on

their importance for recognition, and encodes them via spa-

tially weighted combination of Fisher Vectors.

3. Learning Part Detectors

In this section, we target at learning a collection of dis-

criminative detectors that automatically discover discrimi-

native object / parts. Our strategy consists of three modules:

positive sample initialization, regularized detector training,

and detector selection. The first module generates initial

parts, each of which is defined by a set of potentially pos-

itive samples of image patches. In the second module, we

train detectors for each set of positive samples with a regu-

larized iterative strategy. To remove those noisy detectors,

the third module select good detectors by measuring their

predictive power in terms of recognition accuracy. Note that
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(a) CUB-200-2011 (b) Stanford Dogs

Figure 3. Response distributions of the top scored 10K patches

on VGG-M (512 channels). The top scored responses only focus

on a few channels. We remove the channels with lower response

frequency for better visualization.

the full procedure is weakly supervised, which only need-

s the labels of training examples, while does not need any

object / part level annotation.

3.1. Picking Filters: Positive Sample Initialization

Learning a part detector requires a set of part examples,

which should be identified in the training data. Most pre-

vious works employ some form of unsupervised clustering,

such as k-means [23], [24], or template matching [30], to

initialize a part model. However, running k-means or tem-

plate matching on mid-level patches does not return very

good clusters, and often produces clustered instances which

are in no way visually similar.

Different from previous works, we propose a picking s-

trategy which elaborately selects distinctive and consistent

patches based on the responses of CNN filter banks. The

key insight is that different layers of a CNN are sensitive

to specific patterns. e.g., the lower layers often respond to

corners and other edge conjunctions, while the higher lay-

ers often correspond to semantically meaningful regions.

In a sense, these convolutional filters work as part detec-

tors. However, these detectors are usually weak, and most

of them are not relevant to our fine-grained tasks.

In order to find which filters are distinctive for part dis-

covery, we first generate a large pool of region proposals

with selective search [25], and randomly sample a subset

of one million patches. Each proposal is resized to a tar-

get size of 107 × 107, which makes the activation output

of the 4th convolutional layer a single value (similar with

detection score). Then, we sort responses over all channel-

s and pick the top scored 10K responses. These responses

are binned into corresponding channels according to which

channel they respond most to. Finally, we get a response

distribution of the top scored 10K regions. As shown in Fig.

3, the response distributions are sparse, with most responses

focusing on only a few channels (e.g., for CUB-200-2011,

over 90% responses focus on the top 5% channels). We re-

fer to these channels as distinctive filters, which respond to

specific patterns significantly. In our experiment, we select

channels which include the top 90% responses as distinctive

Algorithm 1 Learning Discriminative Part Detector

Require: Disjoint training subsets {D1,D2};
1: initialization N = {(xi, yi)}mi=1

∈ D1, β = [1, ...1]m

2: while not converged do

3: Detector w⇐ svm train (N, β)

4: [Nnew, βnew]⇐ top (w, D2, m)
⋃

per top (w, D2, k)

5: N ⇐ Nnew, β⇐ βnew

6: swap (D1, D2)

7: end while

8: Return Detector w

filters. For each distinctive filter, we select patches with the

top m (m = 100) responses as initial positives for the corre-

sponding part model. Fig. 1 visualizes some top responding

regions for distinctive and non-distinctive channels. The re-

sponses of distinctive filters always focus on consistent part-

s, such as the head of birds. While non-distinctive filters

pick up some cluttered samples.

3.2. Regularized Detector Training

With the initialization of positive samples, we learn the

corresponding detector by optimizing a linear SVM classi-

fier. We define the negatives based on Intersection over U-

nion (IoU) overlap with the positives, and the regions with

IoU overlap below 0.3 are treated as negative samples. S-

ince negative samples are much larger than the positives, we

adopt the standard hard negative mining method [9], which

converges quickly after only a single pass over all images.

Iterative update. Since the initial positives are not very

good to begin with (as shown in the first row of Fig. 4,

some samples are biased), we train SVM detector iterative-

ly. During each iteration, the top 10% firings of previous

round detector are used as new positive samples. However,

doing this directly does not produce much improvement s-

ince the detector tends to overfit to the initial positives, and

would prefer these positives during the next round of vali-

dation. To solve this issue, we divide the training samples

into two equal, non-overlapping subsets, which enables us

to achieve better generalization by training on one subset

while validating on another. We then exchange the role of

training and validation and repeat this whole process until

convergence (the learned detector does not change).

Regularized Loss Term. Another issue of training objec-

t / part detectors for all the fine-grained sub-categories is

that the top detections always latch on a few easy detectable

subcategories, and cannot discover positive samples from

the majority of other sub-categories. Due to the large inter-

class variations among sub-categories, if a detector does not

see any positive sample of one sub-category, it would lo-

calize badly on that one. However, including patches that

do not correspond to the same part as the exemplars will

decrease the localization and discrimination power of part
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Figure 4. Positive samples during the detectors learning process in different iteration steps. The first row is the initial positive samples and

rows 2-3 show new positive samples returned by the top detections of previous round detectors. Even though the initial positive samples are

not well localized, our algorithm is able to mine new samples which exhibit visual consistency, and learn a set of discriminative detectors.

model. To solve this issue, we mine per-category positive

samples with regularized loss during each round of train-

ing. Specifically, the top 10% detections per-category are

used as positives as well as the top 10% detections among

all subcategories. Since these potential positives are not e-

qually reliable, we assign a weight term β to each positive

sample, which measure the reliability of each positive.

Denote D = {(xi, yi)}ni=1
be the set of positive and nega-

tive training patches, and xi its corresponding feature vector

of xi, where yi ∈ {−1, 1}. The part detector ωt during round

t can be learned by minimizing the following function:

min
1

2
||ωt ||2 +C

n
∑

i=1

βi
t−1ξi

s.t. yi(ω
T
t xi + bt) ≥ 1 − ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n,

(1)

where

βi
t−1 =















Ψ(ωT

t−1
xi + bt−1), yi = 1

1, yi = −1,
(2)

where Ψ[·] is a sigmoid function which maps the detection

scores within range (0, 1), and C controls relative weights

of the loss terms. Note that we introduce an extra regular-

ized term βi
t−1

for each positive sample xi, which measures

the reliability of xi with detection score of previous round

detector. The regularized term highlights the higher scored

patches and downweights the lower scored patches.

Note that there are two benefits for our regularized de-

tector learning. First, with per-category positive sample

mining, the detector can see more diverse positives, which

is beneficial for its generalization. Second, with the intro-

duced regularized term β, the detector is able to avoid over-

fitting the less reliable positives, while focusing on the more

reliable positives. Fig. 4 shows some detector learning pro-

cess in different iteration steps. Our algorithm is able to

mine positive samples which are visually consistent, even

though the initial positives are not well localized. As the

iteration goes, the positives become more and more consis-

tent, which in turn boosts the discriminative power of part

model. The full approach for detector learning is summa-

rized in Algorithm 1.

3.3. Detector Selection

Our algorithm produces tens of detectors, and there is

no guarantee that the part mining procedure will not return

bad detectors. In order to discard those detectors which are

poorly localized, we measure the discriminative power of

detectors in terms of recognition accuracy. We equally di-

vide the labeled training samples into training and valida-

tion subsets. For each detector, classification is performed

based on the top scored region. Finally, we discard detec-

tors with recognition rate below 40%, which reduces the

detectors to only a few (less than ten in our experiments).

4. Bag of Parts Image Representation

With the above trained detectors, we can identify patch-

es corresponding to the parts from each image. One direct

method for part representation is to extract CNN features

directly from the detected parts, and concatenate them for

final representation. This kind of features are usually ob-

tained from the penultimate Fully-Connected (FC) layer of

a CNN, and are widely used in previous works. However,

there are two limitations of FC-CNN for fine-grained recog-

nition. The first is the background disturbance, as CNN re-

quires a fixed rectangle as input, which includes cluttered

background inevitably. The second comes from the inaccu-

racy of detections, which may lose crucial details for part-

based representation. To deal with these issues, instead of

extracting FC-CNN within a tight rectangle, we propose to

compute part saliency map and pool CNN features with S-

patially Weighted Fisher Vector (SWFV-CNN).

Part saliency map. The part saliency map is used to indi-

cate how likely a pixel belongs to a foreground part. Our

part saliency map consists of two sources, part map and

saliency map. The part map indicates the spatial prior of

a part, and is obtained simply from the top detection. The

saliency map [13] is a topographically arranged map that

represents visual saliency of a corresponding scene. Since

fine-grained images are not cluttered with many objects, and
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Figure 5. Sample detection results of our automatically discovered detectors. We select detections with top three recognition accuracies

(shown in red, green, and blue in order), and overlay them to original image for better visualization (Row 1 and 3). We also show the

detections directly returned by the picked filters (Row 2 and 4), which is similar with the method [27]. Our detectors improve localization

power via iterative training, while detectors directly from the filters are weak, and in most situations localize inaccurately. The top two

rows for CUB-200-2011, and the bottom two rows for Stanford Dogs. The last three columns show some failure cases.
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X
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Descriptors
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Figure 6. Illustration of how to compute SWFV-CNN. We first

compute part saliency map with the top detections and saliency

map. The part saliency map assign weight to each descriptor, and

SWFV-CNN is the weighted combination of each Fisher Vector.

the object of interest is always the most salient region, we

choose saliency map S to measure the existence probabili-

ty of foreground object. The final part saliency map M is

obtained as follows:

M(p) =
S(p)

∑k
i=1 Di(p)

Z
, (3)

where Di(p) = 1 when the ith detection contains the pixel

p, otherwise Di(p) = 0. Z is a normalization constant which

makes max M(p) = 1.

Spatially weighted FV-CNN. The Fisher Vector models

the distribution of a set of vectors with gaussian mixture

models and represents an image by considering the gradient

with respect to the model parameters. Let I = (z1, ..., zN)

be a set of D dimensional feature vectors extracted from an

image. Define Θ = (µk,Σk,πk : k = 1, ...,K) be the param-

eters of a gaussian mixture model fitting the distribution of

descriptors, and qik be the posterior probability of each vec-

tor zi (i = 1, ...,N) to a mode k in the mixture model. For an

image I, the Fisher Vector Φ(I) = [u1, v1, ...,uk, vk], which

is the stacking of mean derivation vectors uk and covariance

deviation vectors vk for each of the K modes. Each entry of

uk and vk can be rewritten as follows:

u jk =

N
∑

i=1

ui jk =

N
∑

i=1

qik

N
√
πk

z ji − µ jk

σ jk

v jk =

N
∑

i=1

vi jk =

N
∑

i=1

qik

N
√

2πk















(

z ji − µ jk

σ jk

)2

− 1















,

(4)

where j = 1, ...,D spans the vector dimension. We formu-

late u jk and v jk as accumulated sum of the first and second

order statistics of zi j, respectively. However, this kind of

representation considers each zi equally important, which

is often not the case. The vector zi may lie in non-salient

regions, or less reliable detected regions. Considering this

issue, we introduce a spatially weighted term M(pi) for each

vector zi, which indicates the importance of zi itself. The

weighted results of u jk and v jk can be expressed as:

uw
jk =

N
∑

i=1

M(pi) · ui jk, vw
jk =

N
∑

i=1

M(pi) · vi jk, (5)

with the introduced spatial weights, we are able to catch the

important features for recognition. We would see its effec-

tiveness in the following section. An illustration of how to

compute SWFV-CNN of an image is shown in Fig. 6.

5. Experiments

5.1. Datasets

The empirical evaluation is performed on two bench-

marks: Caltech-UCSD Birds-200-2011 (Birds) [26] and S-
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tanford Dogs (Dogs) [14], which are the most extensive

and competitive datasets in fine-grained literature. Birds

dataset contains 11, 788 images spanning 200 sub-species,

while Dogs dataset consists of 20, 580 images with 120

dog species. We use the default training / test split, which

gives us around 30 training examples per class for Birds

and around 100 training examples per class for Dogs.

5.2. Network

• Supervised pre-training. For Birds, two differen-

t models are used in our experiments: VGG-M [4] and a

more accurate but deeper one VGG-VD [22]. Since Dogs

dataset is a training subset of ILSVRC 2012, simply choos-

ing the pre-trained network brings about cross-dataset re-

dundancy. Considering this issue, we check ILSVRC 2012

training data and remove samples that are used as test in

Dogs, then we train a network (AlexNet) from scratch to

obtain the model specific to Dogs.

• Fine-tuning with saliency-based sampling. Fine-

tuning is beneficial to adapt the network pretrained on Im-

ageNet to our fine-grained tasks. Since most existing fine-

grained datasets only contain a few thousand training sam-

ples, which is far from enough for fine-tuning. A common

strategy is to introduce many “jittered” samples around the

ground truth bounding box [11]. Instead, we propose a

saliency-based sampling strategy without such annotation

information. To this end, we compute a saliency map S [13]

of an image. For each region proposal x generated with

selective search [25], we compute the saliency score with

s(x | S ) =
∑

i∈x S i/
∑

S . The regions with saliency score

above a threshold (set as 0.7 in our experiments, which

expands the samples by approximately 20×) are chosen as

augmented samples. This enables them to have high quality

in containing the object of interest.

There are two benefits for network fine-tuning. First, the

fine-tuned network is a better feature extractor for classifi-

cation, e.g., when fine-tuning on VGG-M [4], our proposed

saliency-based sampling strategy achieves an accuracy of

66.97% on Birds, which is even better than the bounding

box based sampling method in [11] (66.08%). This indi-

cates that for fine-grained datasets, bounding box informa-

tion is unnecessary for network fine-tuning. Second, the

internal responses of convolutional filters are more domain

specific, which helps for part selection in Sec. 3.

5.3. Implementation Details

• Detector learning. In Sec. 3, we choose pool5 fea-

tures for detector training. In practice, the iteration pro-

cess converges within several times, and we set the iteration

times as 7. It only remains several detectors after selection

(Sec. 3.3), and the number is 6 for Birds and 5 for Dogs.

• FC-CNN. FC-CNN is extracted from the penultimate

Fully-Connected (FC) layer of a CNN. The input image is

Method
Birds Birds Dogs

VGG-M VGG-VD AlexNet

FC-CNN BL 66.97% 73.98% 59.67%

FV-CNN BL 58.71% 70.21% 60.52%

FC+FV-CNN BL 71.03% 74.77% 63.75%

PD+FC-CNN 76.74% 82.60% 65.07%

PD+FV-CNN 73.83% 79.76% 63.11%

PD+FC+FV-CNN 78.58% 82.78% 69.84%

PD+SWFV-CNN 77.26% 83.58% 66.25%

PD+FC+SWFV-CNN 80.26% 84.54% 71.96%

Table 1. Recognition results of different variants of our method.

We test models VGG-M [4] and VGG-VD [22] on CUB-200-

2011 and AlexNet [16] on Stanford Dogs. “BL” refers to base-

line method which extracts features directly from the whole image,

without any knowledge of object or parts. “PD” refers to our pro-

posed part detection method in Sec. 3, and “SWFV-CNN” refers

to our spatially weighted FV-CNN method proposed in Sec. 4.

resized to fixed size and mean subtracted before propagat-

ing through the CNN. FC-CNN is widely used in previous

works [2], [32], etc., so we include it for fair comparison.

• FV-CNN. FV-CNN pools CNN features with Fish-

er Vector. We extract conv5 descriptors (512-d for VGG-

M, VGG-VD, and 256-d for AlexNet) at 3 scales (s =

{256, 384, 512}), with each image rescaled to the target size

so that min (w, h) = s. We reduce the dimension to 128-d by

PCA transformation and pool them into a FV representation

with 256 Gaussian components, resulting in 65K-d features.

5.4. Results and Comparisons

We first conduct a detailed analysis of our method with

regard to part detection and recognition performance, and

move on to compare with prior works.

• Part detection. Fig. 5 shows some detection results

(Row 1 and 3) of our learned detectors. We select detections

with top three recognition accuracies (shown in red, green,

and blue in order), and overlay them to the original image

for better visualization. These detections exhibit surprising-

ly good visual consistency even without annotated training

samples. For Birds, they fire consistently and represent a

diverse set of parts (e.g., object, head, and leg). While for

Dogs, they usually focus around head, mainly due to the

fact that other parts are either highly deformable or partial

occluded. We also show detections (Row 2 and 4) direct-

ly returned by the picked filters, which is similar with the

method [27]. These filters are not task relevant and usually

return inferior localization results to ours, which demon-

strates the effectiveness of our part detectors. Note that

these detectors are redundant (e.g., both detectors respond

to dog’s head) to some extent, however, their features have

different representation and can enrich each other.

• Recognition results. The performance of part detec-

tion can be further demonstrated in terms of recognition ac-

curacy. As shown in Table 1, we perform detailed analysis
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Method Train anno. Test anno. Accuracy

Ours PDFS n/a n/a 84.54%

GPP [28] bbox+parts bbox+parts 66.35%

Symbolic [3] bbox bbox 59.4%

POOF [1] bbox bbox 56.78%

Alignment [10]
bbox bbox 67%

n/a n/a 53.6%

PN-CNN [2]
bbox+parts bbox+parts 85.4%

bbox+parts n/a 75.7%

Part R-CNN [32]
bbox+parts bbox+parts 76.37%

bbox+parts n/a 73.89%

FOAF [34] bbox+parts bbox+parts 81.2%

PG Alignment [15] bbox bbox 82.8%

NAC [21] n/a n/a 81.01%

TL Atten. [27] n/a n/a 77.9%

Table 2. Recognition performance comparisons on Birds. “bbox”

and “parts” refer to object bounding box and part annotations.

by comparing different variants of our method. “BL” refer-

s to baseline method, which extracts features directly from

the whole image, without any knowledge of object or part-

s. “PD” refers to our proposed part detection method (Sec.

3), and “SWFV-CNN” refers to our spatially weighted FV-

CNN method (Sec. 4). From Table 1 we observe that:

1) Part detection boosts the performance significantly.

Comparing with the baseline, PD brings about a nearly 10%

(66.97%→ 76.74%) improvement for Birds, and an 5.5%

improvement for Dogs. Note that the performance improve-

ment on Dogs is less than that on Birds, mainly due to the

larger deformations and more frequent occlusions on Dogs.

2) FC-CNN is usually better than FV-CNN. FC-CNN

usually outperforms FV-CNN by around 2%∼3% (76.74%

vs 73.83% for Birds, and 65.07% vs 63.11% for Dogs). This

is because FV-CNN usually includes background informa-

tion, which is confused for fine-grained recognition. While

FC-CNN alleviates this influence by max-pooling.

3) SWFV-CNN performs consistently better than FV-

CNN, and even better than FC-CNN. We find that SWFV-

CNN brings about over 3% improvement comparing with

FV-CNN, and is even better than FC-CNN. The reason is

that SWFV-CNN focuses on features which are important

for recognition, and deemphasizes those which are not help-

ful. The results demonstrate that SWFV-CNN is more suit-

able for fine-grained recognition.

4) SWFV-CNN complements with FC-CNN. When

combining SWFV-CNN with FC-CNN, we obtain an ac-

curacy of 80.26% for Birds, and 71.96% for Dogs, which

demonstrates the complementation of these features. Re-

placing VGG-M with VGG-VD improves the performance

in all the cases, with a final accuracy of 84.54% for Birds.

• Comparisons with prior works. Table 2 shows the

comparison results of our method with prior works on Bird-

s. We list the amount of annotations of each method for

fair comparison. Early works [1], [3], [28] choose SIFT

Method Train anno. Test anno. Accuracy

Ours PDFS n/a n/a 71.96%

Temp. Match [29] bbox bbox 38%

Symbolic [3] bbox bbox 45.6%

Alignment [10]
bbox bbox 57%

n/a n/a 49%

Selec. Pooling [5] bbox bbox 52%

FOAF [34] bbox bbox 53.5%

NAC [21] n/a n/a 68.61%

Table 3. Recognition performance comparisons on Dogs.

as features, and the performance is limited. When switch-

ing to CNN features, our approach is best among methods

under the same setting [21], [27], and obtains a 18% error

reduction comparing with the best performing result [21]

(81.01%). Moreover, our result even outperforms methods

which use object [15] (82.8%) or even part [32] (76.37%),

[34] (81.2%) annotations, only beaten by [2] (85.4%) which

uses both object and part annotations at both training and

testing time. Our method indicates that fully automatic fine-

grained recognition is within reach.

Table 3 shows the comparison results on Dogs. Few

works report results on this dataset, due to there are not

off-the-shelf CNN models for feature extraction. The most

comparable result with our method is [21], which also train-

s AlexNet model from scratch and obtain an accuracy of

68.61%. Our method improves it by over 3%, an error rate

reduction of 10.7%.

6. Conclusion

In this paper, we propose a framework for fine-grained

recognition which is free of any object / part annotation at

both training and testing stages. Our method incorporates

deep convolutional filters for both part detection and de-

scription. We claim two major contributions. Firstly, we

propose to pick good filters which respond to specific parts

significantly and consistently. Based on these picked filter-

s, we elaborately choose positive samples and train a set

of discriminative detectors iteratively. Secondly, we pro-

pose a simple but effective feature encoding method, which

we call SWFV-CNN. SWFV-CNN packs local CNN de-

scriptors via spatially weighted combination of Fisher Vec-

tors. Integrating the above approaches produces a powerful

framework, and shows notable performance improvements

on CUB-200-2011 and Stanford Dogs.
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